4-1-2016

Ingestion of a Nutritional Supplement Pre-Workout Will Increase Exercise Time-to-Fatigue

Allison D. Bloomer
Parkland College

Beena R. Chemmanchery
Parkland College

Rachel Liebowitz
Parkland College

Hannah M. Zalaker
Parkland College

Recommended Citation

http://spark.parkland.edu/kin288_students/1

Open access to this Poster is brought to you by Parkland College's institutional repository, SPARK: Scholarship at Parkland. For more information, please contact spark@parkland.edu.
Ingestion of a nutritional supplement pre-workout will increase exercise time-to-fatigue

Allison Bloomer, Beena Chemmanchery, Rachel Leibowitz, Hannah Zalaker

Parkland College, Champaign, IL

CONCLUSIONS

As hypothesized, results showed that row time-to-fatigue did increase in the test trial. This relates to previous research where exercise time-to-fatigue was shown to improve with pre-exercise nutritional supplementation\(^1,2\). Possible errors in data could have occurred due to variation among the subjects’ age, diet, sleep, lifestyle, and placebo effect since this was an open study. Time-to-fatigue was determined by each subject’s perceived exertion. This is a subjective measure with possible variation from day to day. The nutrition supplement was determined unpalatable by 50% of the subjects.

Based on the findings of the study and previous research, we would recommend the consumption of a balanced nutritional supplement before exercise or athletic performance.

REFERENCES

ABSTRACT

Everyone fatigues at the end of an intense exercise bout. However, previous research has indicated that ingestion of a mixed nutrient supplement one hour pre-exercise will increase exercise time-to-fatigue\(^1\). For this experiment, four females between the ages 20-50 participated in a controlled pilot study. Exercise was performed using a row machine, where time-to-fatigue was measured from a baseline of 80% max HR (220 minus age). The nutrient supplement was ingested 1 hour pre-rowing and contained 30g of protein, 5g carbohydrate, and 3g of fat. Results showed that pre-exercise ingestion of a mixed protein supplement did increase row time-to-fatigue.

METHODS

Subjects participated in a 6 week experiment, exercising on a row machine in both the control and test trials. Subjects followed a routine breakfast and morning exercise for at least 30 minutes and performed the trials around 1 pm. In the control trials, row exercise time-to-fatigue was performed without the ingestion of a nutrition supplement pre-exercise. In the test trial, subjects ingested a mixed protein supplement (Premier Protein) one hour prior to exercise. This product was chosen based on popularity, price and nutrient content.

OBJECTIVES

- To determine if nutrition supplements ingested pre-exercise will affect exercise time-to-fatigue
- Use the information to recommend the use of nutrition supplements pre-exercise

RESULTS

100% of subjects who started, completed the experiment. Average time-to-fatigue in the control trial (no supplement) was 6 minutes, 40 seconds (383.7 seconds) compared to 10 minutes, 50 seconds (631.3 seconds) in the test trial (with supplement).

CONCLUSIONS

As hypothesized, results showed that row time-to-fatigue did increase in the test trial. This relates to previous research where exercise time-to-fatigue was shown to improve with pre-exercise nutritional supplementation\(^1,2\). Possible errors in data could have occurred due to variation among the subjects’ age, diet, sleep, lifestyle, and placebo effect since this was an open study. Time-to-fatigue was determined by each subject’s perceived exertion. This is a subjective measure with possible variation from day to day. The nutrition supplement was determined unpalatable by 50% of the subjects.

Based on the findings of the study and previous research, we would recommend the consumption of a balanced nutritional supplement before exercise or athletic performance.

REFERENCES
