Parkland College

Natural Sciences Poster Sessions

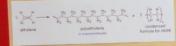
Student Works

2012

Mechanochemically Active Polymers

Laura Ward Parkland College

Recommended Citation


Ward, Laura, "Mechanochemically Active Polymers" (2012). *Natural Sciences Poster Sessions*. 34. https://spark.parkland.edu/nsps/34

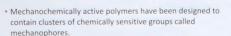
Open access to this Poster is brought to you by Parkland College's institutional repository, SPARK: Scholarship at Parkland. For more information, please contact spark@parkland.edu.

What are Polymers?

- Polymers are large molecules composed of many basic repeating units called monomers.
- Molecular Weights can range from 10,000 to over 100,000 amu.
- Polymers are typically organic, covalently bonded molecules.
- Composed mainly of Carbon, Hydrogen, Oxygen, Nitrogen and Silicon atoms.

Molecular Arrangement

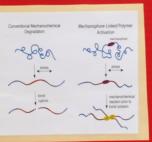
- The molecular structure of polymers varies by type from crystalline to
- amorphous. • Crystalline polymers have atoms arranged in a set order or pattern.
- Amorphous polymers have a completely random molecular arrangement.
- Engineers alter the properties of polymers by changing the molecular arrangement.


Polymerization

 Monomers react to form polymers via the process of polymerization.
 The simplest of this type of reaction is called addition polymerization.
 Involves the movement of electrons by splitting a double bond into a single bond.

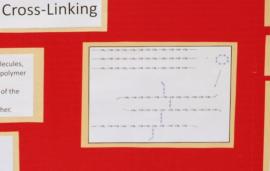
Mechanochemically

Active Polymers


 Mechanophores are added directly to the backbone of the polymer

Laura Ward

Chemistry 102-001


 Mechanophores allow for more selective breaking of covalent bonds when a force is applied without weakening the overall material.

- During polymerization the addition of heat, specific molecules,
- or irradiation can allow for bonds to form between the polymer chains. • Such cross-linking improves the strength and durability of the
- Such cross-linking improves the strength and durability of the polymer and increases its functionality.
 Links polymer chains so they cannot move past each other.

Mechanical Properties

Strength vs. Toughness

Tensile strength measures The toughness of a material is how far a material can be the area under a stress-strain stretched before it fails. curve. Compressional strength A material that is strong but conversely measures how not tough is said to be brittle. far a material can be Brittle substances are strong, compacted. but cannot deform very much. Measures how much force Measures how much energy is is required to break a required to break a material. material.

Stress & Strain

- Whenever a force is applied to a material some degree of deformation takes place.
- A material will return to its original condition until a specific amount of force is applied, once past that point deformation is permanent.
- How a polymer reacts to stress depends on its viscoelastic properties.
- Once a critical stress is reached the material will fail.

Conclusion

- The main goal of polymer engineering is to produce materials that are able to heal themselves when exposed to a damaging stress.
 Awareness of mechanical state through mechanophores is an
- important intermediate to that step.
- Applications include:
- Incorporation into ropes used in rock climbing.
- Use in airplane fuselages to detect damage.
- Use in essentially any polymer or polymer
- composite product to detect damage.

Sources

- •Burdge J.; Chemistry, 2nd ed.; McGraw-Hill: New York, 2011; 1000-1009
- http://autonomic.beckman.illinois.edu/Nature_Concept2.html, Beckman Institute, University of Illinois at Urbana-Champaign, "Mechanochemicality Active Polymers," Copyright 2009
- Kucharski T.; Boulatov R. The Physical Chemistry of Mechanoresponsive Polymers. J. Mater
- Chem. [online] 2011, 21, 8237-8255 • Polymers. http://www2.chemistry.msu.edu/faculty/reusch/VirtTxt/ml/polymers.htm (accesse
 - (2).
- Polymer Crystallinity, http://tauly.uncupstate.edu/liver/Polymer/s208esources/Crystalline.htm (accessed 3/12/12 Potisek, S.L.; Davis, D.A.; Sottos, R.R.; White, S.R.; and Moore, J.S. Journal of the American Chemical Society. 2007, 129, 1380-1388.

 Mechanophores also have the advantage of being able to respond to stress and react to change color before failing.

- This reaction occurs through the process of electrocyclic ring closure.
- In this process a pi bond is converted into a ring forming sigma bond.