<table>
<thead>
<tr>
<th>Parkland College</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Sciences Poster Sessions</td>
<td>Student Works</td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Fluoride and Your Teeth: How Fluoride in Dental Products Protects Your Teeth from Cavities</td>
<td></td>
</tr>
<tr>
<td>Jacob Dickey</td>
<td></td>
</tr>
<tr>
<td>Parkland College</td>
<td></td>
</tr>
</tbody>
</table>

Recommended Citation

https://spark.parkland.edu/nsps/39

Open access to this Poster is brought to you by Parkland College's institutional repository, SPARK: Scholarship at Parkland. For more information, please contact spark@parkland.edu.
Fluoride in Dentistry

Fluoride is a well-known additive which is used for dental care. Fluoride’s role includes the prevention of caries and improving oral and health. There are many different types of fluoride compounds used in toothpastes and mouthwashes in order to replace lost calcium and phosphate ions due to demineralization.

NaF

CaF₂

H₂SiF₆

Na₂SiF₆

SnF₂

Fluorine in a chemical element naturally found in fluorapatite, which contains fluorine, which has been used as a cleansing agent. The colorless, transparent crystals in fluorapatite are white when illuminated. Only found in this natural compound, fluorapatite deposits are harvested in Illinois, Kentucky, England, and other parts of the world. At room temperature, fluorine is a family yellow gas with an irritating odor. Just one stable isotope of fluorine exists in the elemental form, fluorine-19. When separated and alone, fluorine will react with itself to form a dendritic molecule. Fluorine is the most electronegative element and it seeks to bond with many different metals, metalloids and nonmetals.

How do Teeth Decay

Oral caries and tooth decay begin when the outer surface of the tooth is attacked by acid produced by bacteria commonly known as plaque. This overall process is called mineralization.

Fluoride and Teeth

How fluoride in dental products protects your teeth from cavities

Jacob Dickey

Parkland College Chemistry 101-006

Replacement Reaction of Fluoride in Mineralization:

\[
Ca_3(PO_4)_2(OH)_4 + 2F^- \rightarrow Ca_3(PO_4)_2 + 208^\circ F
\]

Fluoride replaces hydroxide in hydroxyapatite to produce enamel that is less soluble in the presence of acid, thus showing the effectiveness of fluoride for dental health.

Enamel Structure

The enamel is made of a three-dimensional molecular network of calcium ions (Ca²⁺), phosphate ions (PO₄³⁻) and hydroxide ions (OH⁻). This structure is called hydroxyapatite. Further strengthening the bonds between these ions are various protein-like molecules, dispersed between the spaces between them. Mineralization occurs due to hydroxyapatite continually dissolving and reforming within the mouth. This process is referred to as demineralization. At the same time, ions in saliva are working to neutralize the acid by recombination to deposit enamel back on the teeth. The process of saliva replenishing calcium and phosphate ions in the enamel is called remineralization. If the bacteria are left undisturbed for extended periods of time and remineralization does not occur at an equal rate as demineralization, a net loss of calcium/phosphate ions will occur, leading to the formation of pits or cavities in tooth enamel. Eventually, bacteria will break through the enamel and further destroy the tooth structure.

Health Benefits of Fluoride in Dental Products and Municipal Water

The British Fluoridation Authority recognizes that while the relationship between fluoride and tooth decay is complex and not fully understood, fluoride in toothpastes, mouthwashes and even municipal water are known to intervene in the progression of tooth decay through at least four ways. 1

1. Fluoride alters the structure of the developing enamel, making it more resistant to acid attack
2. Low levels of fluoride in the plaque and saliva both encourage remineralization and ensure that enamel is replaced with improved quality
3. Fluoride works to reduce the ability of plaque acid to produce acid by preventing enzymes from functioning properly
4. Fluoride ingested during childhood while the teeth are developing minimizes the depth of grooves on the surface of teeth, preventing bacteria from embedding deep in the enamel

Save Your Teeth

Fluoride is an essential and necessary component to ensuring the health and well-being of teeth. Using fluoridated products such as water, milk, salt, toothpaste and mouthwash is essential to preventing dental decay by protecting the strength of your enamel. In a given routine, even using mouthwash daily on top of brushing your teeth can severely lower your chances of getting tooth decay and cavities. The effects of fluoride on your teeth have been widely recognized to improve dental hygiene, harden enamel and kill harmful bacteria.

References

1. American Academy of Pediatric Dentistry
2. American Dental Association