2013

Hideki Shirakawa: Synthesized Counductive Polymers

Erika Rosenberger
Parkland College

Recommended Citation

Open access to this Poster is brought to you by Parkland College's institutional repository, SPARK: Scholarship at Parkland. For more information, please contact spark@parkland.edu.
Hideki Shirakawa synthesized conductive polymers

Erika Rosenberger
Parkland College CHE 203-001

BIOGRAPHY
- Born August 20, 1936 in Tokyo, Japan
- Knew what he was going to do
- 1976 worked with Alan G. MacDiarmid and Alan J. Heeger
- Major: Polymer chemistry, chemical engineering
- Married with 2 children
- Retired and living in NY

POLYACETYLENE THIN FILM
- Polyacetylene
 - Normally black powder
 - Insoluble and infusible
 - Hard to work with
 - Ziegler–Natta catalyst
 - Ti(OCH3)4 + Al(C2H5)3
 - Used unique kind
 - Accidentally added 1000 times more

POLYACETYLENE
- trans-polyacetylene → metallic behavior
- cis-polyacetylene

CONDUCTIVE POLYMERS
- Doping
- π bonds in polyacetylene
- Oxidation to form carbocations
- Product: trans-polyacetylene
- Conductivity way higher
- United the light and flexible plastic with electric properties of metals

WHAT IS CHEMICAL DOPING?
- When you add small amounts of impurities (e.g., iodine)
- Can be used to make plastics behave more like metals
- Free-floating electrons = current of electricity
- Oxidation

AWARDS AND ACCOMPLISHMENTS
- Degree of Doctor of Engineering in March 1966
- 1983 - The Award of the Society of Polymer Science, Japan
- 2000 - Nobel Prize in Chemistry
- Order of Culture and selected as Person of Cultural Merit
- Special Award of the Chemical Society in Japan

REFERENCES