Parkland College

Natural Sciences Poster Sessions

Student Works

2018

Improvement of Emissions of internal Combustion Engines Using Reduction in Weight

Javier Alanis

Parkland College

Recommended Citation

Alanis, Javier, "Improvement of Emissions of internal Combustion Engines Using Reduction in Weight" (2018). *Natural Sciences Poster Sessions*. 158.

https://spark.parkland.edu/nsps/158

Open access to this Presentation is brought to you by Parkland College's institutional repository, SPARK: Scholarship at Parkland. For more information, please contact spark@parkland.edu.

IMPROVEMENT OF EMISSIONS OF INTERNAL COMBUSTION ENGINES USING REDUCTION IN WEIGHT

JAVI ALANIS
PARKLAND COLLEGE
CHE-101-006
DR. NICELY

INTERNAL COMBUSTION ENGINE 2

- CONVERTS CHEMCAL ENGERGY INTO MECHANICAL ENERGY
- ENERGY IS CREATED BY SMALL EXPLOSIONS IN THE CYLINDER
- THIS ENERGY IS RELEASED WHEN FUEL REACTS/COMBUSTS WITH OXYGEN IN THE AIR
- $Hydrocarbon + O_2 \rightarrow CO_2 + H_2O$

FOUR STROKE DIESEL COMBUSTION ENGINE 2

- INTAKE
- COMPRESSION
- POWER
- EXAUST

EMISSIONS 1

- CARBON MONOXIDE
- NITROGEN OXIDE
- NITROGEN DIOXIDE

CARBON MONOXIDE EFFECTS

- CO IS GIVEN OFF WHEN CARBON-BASED MATERIALS ARE BURNED 4
- HEADACHE 4
- DIZZINESS 4
- VOMITING ⁴
- IF HIGH ENOUGH ONE CAN BECOME UNCONSCIOUS OR EVEN DIE 4
- Moderate and high exposure over long periods of time have been linked with heart disease ⁴
- INTERMEDIATE PRODUCT IN THE COMBUSTION OF A HYDROCARBON FUEL PRODUCED DUE TO INCOMPLETE COMBUSTION. 1

NITROGEN OXIDE AND NITROGEN DIOXIDE EFFECTS 3

- Nitrogen combines with oxygen when released to create NO then combines further to create NO_2
- Nitrogen Dioxide
 - IRRITANT GAS HIGH CONCENTRATIONS CAUSES INFLAMMATION OF AIRWAYS.
- NO_X
 - REACT TO FORM SMOG AND ACID RAIN
 - CENTRAL TO THE FORMATION OF FINE PARTICLES AND GROUND LEVEL OZONE
 - BOTH HAVE ADVERSE HEALTH EFFECTS

4- STROKE CONSTANT SPEED DIRECT INJECTED ENGINE OF VIJAY BRAND MODEL VIC-1 1

- REDUCED WEIGHT IN FLYWHEEL FROM 18 KG TO 9 KG
- REDUCED WEIGHT NEEDS HIGHER SPEED TO MAINTAIN SAME POWER
 - REDUCED BORE DIAMETER FROM 85 TO 76 MM
 - REDUCTION IN STROKE LENGTH FROM 80-78 MM
 - Change Crank Diameter at flywheel end from 40 33 mm

Figure 1. Flywheel

Table 1. Specifications of the flywheel.

Dimensions	Existing flywheel	Modified flywheel
Weight	18 kg	9 kg
O.D. (D)	287 mm	280 mm
Rim thickness (t)	25 mm	35 mm
Web thickness (t1)	25 mm	20 mm
Rim width (W)	70 mm	30 mm

EXPERIMENT SET-UP 1

- Engine was coupled to a hydraulic dynamometer with coupler to control speed and load
- INLET AND OUTLET TEMPERATURES WERE MEASURED BY THERMOMETERS

• Digital exhaust gas pyrometer and Testo-350 exhaust gas analyzer were

CONNECTED TO EXHAUST.

EXPERIMENT 1

The emission test was tested at the most suitable load on each engine

Description	Existing engine	Modified engine
Rated Power (kW)	3.7	3.7
Speed variation (rpm)	1500,1800,2000 & 2200	2000,2200,2400 &2600
Bore (mm)	85	76
Stroke (mm)	80	78
Mechanical efficiency (%)	80	80
(Taken from IS standard)		
Altitude (m)	140 m	140 m
Nominal compression ratio	16.5:1	16.5:1
Specific gravity of fuel	0.83	0.83
Calorific value (kJ/kg)	43,900	43,900
Oil specification	Yantrol-32	Yantrol-32
Cooling	water	water

CO EMISSION RESULTS 1

- MODIFIED WAS MAYBE LOWER BECAUSE THE HIGHER SPEED OF THE MODIFIED ENGINE COULD
 HAVE INCREASED VOLUMETRIC EFFICIENCY, BOOSTING TURBULENCE MAKING BETTER
 COMBUSTION
- RESULTED INTO LOWER CO emission by approximately $4\,\%$ in the modified engine at all loading condition

NO_X RESULTS ¹

- Could have been lower since it was tested at higher speeds, leading faster mixture between fuel and air, and shorter ignition delay
- Lower NO_χ emissions in the modified engine by approximately 10% lower at full load

IMPORTANCE

- REDUCTION IN POLLUTION IN OUR ENVIRONMENT
- REDUCTION IN HEALTH DEFECTS

WORKS CITED

- 1. Parekh, H. J.; Ramani, B. M.; Parekh, C. J. Performance Enhancement of Internal Combustion Engine Using Weight Reduction Approach. {Online] International Journal Of Automotive And Mechanical Engineering 2018, 15 (1), 4962–4977. https://eds-b-ebscohost-com.ezproxy.parkland.edu/eds/pdfviewer/pdfviewer?vid=3&sid=a4564ef1-51ca-45df-87b3-77de0ac1a3f4%40pdc-v-sessmgr03 (Accessed oct 16, 2018).
- 2. DIESEL ENGINE http://cset.mnsu.edu/engagethermo/components_diesel.html (Accessed Nov,18 2018)
- 3. NITROGEN OXIDE (NOX) POLLUTION HTTP://www.icopal-noxite.co.uk/nox-problem/nox-pollution.aspx (accessed Nov 6, 2018).
- 4. Carbon Monoxide Poisoning https://ephtracking.cdc.gov/showCoRisk.action (accessed Nov 6, 2018).