2012

Mechanochemically Active Polymers

Laura Ward
Parkland College

Recommended Citation
Ward, Laura, "Mechanochemically Active Polymers" (2012). Natural Sciences Poster Sessions. Paper 34.
http://spark.parkland.edu/nsps/34

Open access to this Poster is brought to you by Parkland College's institutional repository, SPARK: Scholarship at Parkland. For more information, please contact spark@parkland.edu.
Mechanochemically Active Polymers

What are Polymers?
- Polymers are large molecules composed of many basic, repeating units called monomers.
- Molecular weights can range from 10,000 to over 100,000 amu.
- Polymers are typically organic, covalently bonded molecules.
- Composed mainly of Carbon, Hydrogen, Oxygen, Nitrogen and Silicon atoms.

Mechanophores
- Mechanochemically active polymers have been designed to contain clusters of chemically sensitive groups called mechanophores.
- Mechanophores are added directly to the backbone of the polymer.
- Mechanophores allow for more selective breaking of covalent bonds when a force is applied without weakening the overall material.

Molecular Arrangement
- The molecular structure of polymers varies by type from crystalline to amorphous.
- Crystalline polymers have atoms arranged in a set order or pattern.
- Amorphous polymers have a completely random molecular arrangement.
- Engineers alter the properties of polymers by changing the molecular arrangement.

Polymerization
- Monomers react to form polymers via the process of polymerization.
- The simplest of this type of reaction is called addition polymerization.
- Involves the movement of electrons by splitting a double bond into a single bond.

Strength vs. Toughness
- Tensile strength measures how far a material can be stretched before it fails.
- Compressional strength measures how far a material can be compacted.
- Measures how much force is required to break a material.

Stress & Strain
- Whenever a force is applied to a material some degree of deformation takes place.
- A material will return to its original condition until a specific amount of force is applied, once past that point deformation is permanent.
- How a polymer reacts to stress depends on its viscoelastic properties.

Conclusion
- The main goal of polymer engineering is to produce materials that are able to heal themselves when exposed to a damaging stress.
- Awareness of mechanical state through mechanophores is an important intermediate to that step.
- Applications include:
 - Incorporation into ropes used in rock climbing.
 - Use in airplane fuselages to detect damage.
 - Use in essentially any polymer or polymer composite product to detect damage.

Sources
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421661/
- https://www.chem.wisc.edu/research/ptan/ptanLab.html
- Trepak, A., Crystallinity, https://www.pnas.org/content/113/24/6694.